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The axial marginal density is defined as a projection of the three-dimensional eleotron den- 
sity onto the symmetry axis in a linear molecule, and represents essential features of the bond- 
ing characteristics of that system. Based on the local scaling method, a theory is presented for 
the direct and variational determination of the axial marginal density. Illustrative applications 
are presented for the ground 1 scrg state of the H + molecule, and simple yet sufficiently accurate 
marginal densities are reported. 

1. I n t r o d u c t i o n  

Using  the m e t h o d  of  the local scaling t r ans fo rmat ion  [1 ], we have recently devel- 
oped  (see [2,3] for review) a theory for the energy density funct ional  E[p], which 
enables a direct and  variat ional  de te rmina t ion  of  the electron density p(r). Fo r  the 
N-elec t ron  system under  considerat ion,  according to this theory,  we first choose 
an appropr ia te  (i.e., simple yet physically acceptable) reference wave funct ion  
~P0 ({ri}) which is associated with the electron density po(r). (Spin variables are sup- 
pressed,  since they play no direct role in the present  study.) We then cons t ruc t  a 
local scaling funct ion  s = s(r) between the reference density po(r) and the given 
densi ty p(r), and apply it to ~P0({ri}) in order  to generate a wave funct ion ~Pp({ri}) 
cor responding  to the given density p (r), Since the generated wave funct ion  kop ({ri}) 
has the density exactly the same as the given density p(r), we regard ~Pp({r~}) as a 
paren t  wave funct ion  of  the density p(r). The energy density funct ional  E[p] is then  
def ined as the Hami l ton ian  expectat ion value over the wave funct ion  k~p({ri}). 
The  m o m e n t u m - s p a c e  version [4] and the spin-polarized version [5] of  the theory 
have also been developed.  General izat ions to the electron-pair  (or intracular)  den- 
sity [6] and  to the excited-state electron density [7,8] have been p roposed  very 
recently. 

The  m e t h o d  has been actually applied to  the hel ium and hel iumlike a toms  
[9,10], the Li a t o m  [5,11], and  the Be a tom [11]. Simple posi t ion and m o m e n t u m  
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densities have been variationally determined that compare well with the near Har- 
tree-Fock densities. A few calculations beyond the Hartree-Fock approximation 
have been given [9,10] for the helium and heliumlike atoms. An application of the 
method to mapping between the position and momentum densities has also been 
found to be very successful for all the first- and second-row atoms [12,13]. 

Up to now, however, these applications of the method have been limited only 
to atoms. In the present paper, we develop an energy functional theory for the axial 
marginal density of diatomic and linear polyatomic molecules using the local scal- 
ing technique. The present study is the first application of the local scaling method 
to the molecular density problem. The axial marginal density pz (z) is a condensa- 
tion of the three-dimensional electron density p(r) = p(x, y, z) onto the internuc- 
lear z-axis yet still contains the essential feature of the density (re)distribution in 
linear polyatomic systems [ 14,15]. In section 2, a property of the axial marginal den- 
sity is first outlined. A local scaling transformation is then introduced for the refer- 
ence and given marginal densities, and an energy functional is defined in terms of 
the axial marginal density. In section 3, illustrative applications are presented for 
the ground 1S~g state of the H + system. Several simple marginal densities resulting 
from the energy density variation are reported. Atomic units are used throughout 
this paper. 

2. Energy functional of  marginal  density 

2.1. MARGINAL DENSITY 

The electron density function p(r) defined by 

p(r) = N f Ik~(r, rE,.. . ,  ru)l 2 dr2.. ,  drN (1 ) 

is a joint probability function with three variables symbolically expressed by the 
spatial vector r. When we use the Cartesian coordinates r = (x,y, z), the one- 
dimensional marginal density function pz(Z) with respect to the variable z is given 
by 

f p(x,y,z)dxdy. (2) pz(Z) 

If the z-axis is taken to be the symmetry axis of a diatomic or linear polyatomic sys- 
tem, Pz (z) is referred to as the "axial" marginal density, and the "equatorial" densi- 
ties Px (x) and py (y) are analogously defined. 

The axial marginal density pz(Z) is a projection of p(r) onto the symmetry axis, 
and is the Fourier transform of the form factor F(s) = F(sx, sy, sz) on the corre- 
sponding Sz-axis [14]. It should be noted that since pz(Z) represents a "condensa- 
tion" of the three-dimensional density p(r) onto a line, the number of electrons is 
conserved: 
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f +~ p~(z) = (3) dz N .  
C~ 

A recent study [14] has shown that the axial marginal density pz(Z) is a convenient 
quantity to grasp the essential feature of the bonding\antibonding density reorga- 
nization in diatomic systems. The marginal density pz(z) has also been used to ana- 
lyze [15] the density distributions in different electronic states and to define [16- 
19] "atomic regions" and the resultant atomic charges in a molecule. 

2.2. AN E N E R G Y  F U N C T I O N A L  

For the N-electron diatomic or linear polyatomic system under consideration, 
we assume the presence of an appropriate reference wave function O0({ri}). It is 
associated with the three-dimensional electron density p0 (r) and the axial marginal 
density p0~ (z) through the definitions (1) and (2), respectively. In order to generate 
a parent wave function Oz ({ri}) of a given marginal density pz (z), we first introduce 
a local scaling z' = z a (z) between the two marginal densities pz (z) and pOz (z)~: 

p (z) = (4) 

where J(z'/z) is the Jacobian for the transformation z' = z'(z) and satisfies the rela- 
tion 

J(z'/z) dz = clz', (5a) 

o r  

in  

z' = z' (z) is determined by the solution of either the differential equation 

dz'/dz = pz(z)/poz(Z') (6a) 

or the integral equation 

f z  re(z) pz(t)dt= poz(t)dt. (6b) 
Oo d - - O 0  

Applying the local scaling z a = z'(z) thus determined, we generate a new wave 
function ~ ({ri}) as follows: 

ez({ri}) = 1/2 Co({4}) ,  (Ta) 

where 

~ = (xi, yi,~) and g = z'(zi). (7b) 

J( i / z )  dr = dr ' ,  (5b) 

which dr = dxdydz  and dr' = dxdydz j. The explicit functional form of 
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The generated wave function ~({ri}) is associated with the following axial mar- 
ginal density: 

N f  [g'~(x,y, z, r2 , . . . ,  rN)[ 2 dr2. . ,  drN dxdy 

NJ</z) f ,/N)I 2 

x dr2 . . ,  drN dx dy 

J(z'/z) / po(x,y,z') dx dy 

= 

= p z ( z ) .  ( 8 )  

The first equality in eq. (8) follows from eq. (7a), the second from eqs. (5b) and 
(1), the third from eq. (2), and the last from eq. (4). Equation (8) means that the gen- 
erated wave function ifz({ri}) has an axial marginal density exactly the same as 
the given density pz(z), and hence the function ~z is a candidate for the parent wave 
function of the marginal density pz (z). 

We assign the wave function ifz to the parent wave function of the given axial 
marginal density p~(z). Then the energy E associated with the density pz(Z) is 
defined as the Hamiltonian expectation value over the function ff'~: 

E[g'z] = < ~ l H l ~ > / < ~ l i f ~ >  

= E[p~, k~0], (9) 

where H is the Hamiltonian of the system. Notice that the energy E is not a true 
functional of the auxiliary function ifz but a functional of the given marginal den- 
sity p~(z) and the reference wave function if0, since ifz is totally specified by p~ and 
~0. In other words, the energy E is now a well-defined functional of the axial mar- 
ginal density p~(z) within the framework of the reference function if0 initially cho- 
sen and fixed. Since the function ~ is generated through a simple variable- 
transformation of if0 (see eq. (7a)), we suppose that ff'~ is physically acceptable so 
long as ~0 is acceptable. Then the energy functional (9) is an upper bound to the 
exact energy. For a chosen if0, we can then determine the axial marginal density 
pz(z) so as to minimize the energy E. The procedure constitutes a direct and varia- 
tional determination of the axial marginal density of diatomic and linear polya- 
tomic systems. Since the auxiliary wave function ~ has an increased variational 
freedom compared to ¢0 through the scaling function z' -- z'(z), we expect that the 
minimum energy Emi n -----ELoz,opt, ~0] will be lower than the reference energy 
Eo = E[poz, ifo]- 
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3. Applicat ion to H + molecule  

For the special case of one-electron systems, we can bypass the explicit determi- 
nation of the scaling function z' = z'(z). In this case, eq. (7a) combined with eq. 
(4) reads 

~Pz(X,y,z) = [pz(z)/poz(i)]l/2kVo(x,y,z'). (10a) 

If we introduce new reference quantities, 

g'~ (x, y, z) = ~'o (x, y, z' (z)), (11 a) 

p'o~(Z) = po~(Z'(Z)), ( l lb)  

we can rewrite eq. (10a) as 

ff/~(x,y,z) = [pz(Z)/Joz(Z)]l/2g"o(X,y,z ) . (10b) 

Since the wave function ~v~ is associated with the marginal density p~, we can 
easily verify that O~ defined by eq. (10b) has the marginal density pz (z) irrespective 
of the reference function ~'~. Choosing an appropriate ~ ,  we can then straightfor- 
wardly generate a parent wave function ff'z of the given marginal density p~(z) by 
eq. (10b). Such a simplification is also possible for the Hartree-Fock treatment of 
two-electron systems in their singlet spin states. However, this is not true for many- 
electron systems, since in those cases there is no direct correspondence between 
the quantities ~ and p' Oz" 

For the ground l sag state of the H + molecule (the internuclear distance R is 
kept fixed at 2), we use a linear combination of M symmetrized ls Gaussian func- 
tions as the reference wave function: 

M 

qlM(r) = E CiG(r;Ai, Di), (12a) 
i=1 

G(r; A,D)  = exp{-A[x 2 + y2 + (z + D/2)2]} 

+ exp{_A[x 2 + y2 + ( z -  D/2)2]}, (12b) 

where the origin is taken to be the midpoint of the two nuclei. The parameters 
{ Ci, Ai, Di} have been determined by the ordinary variational method. The refer- 
ence function (12a) has the axial marginal density 

M 

poz(Z) = 7r E[CiCj / (A i  + Aj)]g(z; Ai, Di)g(z; Aj, Dj), (13a) 
id=l 

where 

g(z;A,D)  = exp[-A(z + D/2) z] + e x p [ - A ( z -  D/2) z] 

= 2 exp[-A (z 2 + D 2/4)] cosh(ADz).  (13b) 

For the sake of comparison later, we note that the right-hand side of eq. (13a) is 
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quadratic with respect to the function g, and the density is composed of 
M ( M  + 1)/2 different terms. 

As a trial density pz(z), we use a linear combination of the Gaussian functions 
defined by eq. (13b): 

K 

FK(Z) = Z cig(z;ai, di), (14) 
i=1 

which contains adjustable parameters {ci, ai, di}. Since the analysis of the diatomic 
marginal density has shown [14] that the axial marginal density does not have any 
cusps, eq. (14) can be considered as a reasonable approximation. In fig. 1, the near 
exact pz(Z) of the Hf  molecule, which is dealt with in the present study, is depicted 
for reference (see below for details). 

Since we have fixed a functional form of the trial marginal density pz(z), the 
energy functional (9) now reduces to an energy function of the parameters 
embedded in FK: 

E[pz] = E({ci, ai, di}), (15) 
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Fig. 1. The near exact marginal density pz,.~(z) of the H + molecule. All the F2(z)-Fs(z) densities 
obtained by referring to either g3 (r) or ~u6(r ) (summarized in tables 2 and 3) are superimposable on 

pz,n. (z) in the present scale of  figure. 
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for a chosen reference function ~uM. In the following computations, the integra- 
tions involved in the evaluation of the energy expectation value have been per- 
formed analytically with respect to x and y, and numerically with respect to z using 
the double exponential method [20]. Sufficient accuracy of the numerical integra- 
tion has been verified. The optimization of the parameters {ci, ai, di} has been car- 
ried out using the Powell method of conjugate directions [21]. 

We have first employed the simplest function ~1 (i.e., M = 1 in eq. (12a)) as the 
references for the density functional calculations. The results for the five trial mar- 
ginal densities F r  (z) are summarized in table 1 together with the associated electro- 
nic energies E[FK]. Since the reference function ~1 has an energy of 

- 1.037 411 11, all the densities in table 1 are superior to the reference density in the 
variational sense. However, the best energy of -1.043 875 11, obtained with 
F5 (z), is still far from the known [22] exact value of -1.102 634 21. The analysis of 
the density functions themselves has shown that the overall behavior is accepta- 
ble, but in quantitative sense the distribution in the internuclear region is poor com- 
pared to the near exact density (see below for detailed discussion). Not  much 
improvement in the energy and the density distribution is observed, with an 
increase in the number of terms in the trial density. The function i//1 composed only 
of a single Gaussian appears to be too crude and not appropriate as a reference of 
the system. 

T a b l e  1 
V a r i a t i o n a l l y - d e t e r m i n e d  axial  m a r g i n a l  dens i t ies  fo r  the  H~- molecu le ,  w h e n  g l  (r) is e m p l o y e d  as  
t he  re fe rence .  

D e n s i t y  O p t i m u m  p a r a m e t e r s  E n e r g y  

F l  (z) cl = 0.27193, al = 0.92924, dl = 1.39722 - 1.039 591 88 

F2 (z) cl = 0.15884, al = 0.46608, dl = 0.00481; - 1.043 677 25 

c2 = 0.07968, a2 = 2.59902, d2 = 1.85017 

F3(z) cl = 0.08510, al = 0.40195, dl = 0.01146; - 1 . 0 4 3  852 37 

c2 = 0.15568,a2 = 1.24734,d2 = 1.42611; 

c3 = 0.02116,a3 = 6.23628,d3 = 1.91520 

F4(z) cl = 0.03246, al = 0.33738, dl = 0.02202; - 1 . 0 4 3  872 41 
c2 = 0.16408, a2 = 0.79270, dE = 1.15400; 

c3 = 0.06093,a3 = 2.40969, d3 = 1.78162; 
c4 = 0.00879, o.4 = 10.9301, d4 = 1.94274 

Fs (z )  cl = 0.01505, al = 0.30166, dl = 0.06786; - 1 . 0 4 3  875 11 

c2 = 0.13629,a2 = 0.61814,d2 = 0.93515; 
c3 = 0.08913, a3 = 1.54133, d3 = 1.59987; 

c4 = 0.02041, a4 = 5.06876, d4 = 1.90305; 
cs = 0.00240,a5 = 25 .1838,ds  = 1.97279 
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W e  ha ve  then  ca r r i ed  ou t  the dens i ty  func t iona l  ca lcu la t ions  us ing i//3 a n d  i//6 
func t ions  as the reference.  (The  func t ions  ~u 3 and  I//6 have  energies  o f -  1.100 218 33 
and  - 1 . 1 0 2  524 17, respect ively . )  The  resul ts  are  s u m m a r i z e d  in tables  2 a n d  3 fo r  
the  tr ial  func t ions  F~ (z) t h r o u g h  F5 (z). C o m p a r e d  to  the va lues  in tab le  1, we f ind 
tha t  the  energies  E[FK] are  g rea t ly  i m p r o v e d  by  the a d o p t i o n  o f  the  be t t e r  r e fe rence  

funct ions .  In pa r t i cu la r ,  the  ene rgy  - 1 . 1 0 2  553 12 assoc ia ted  wi th  the Fs(z)  den-  
si ty in tab le  3 is r e a s o n a b l y  accura te ,  when  we cons ider  the s low co n v e rg en ce  [23] o f  
G a u s s i a n  a p p r o x i m a t i o n s  in the o r d i n a r y  va r i a t iona l  ca lcula t ions .  

The  accurac ies  o f  the  15 axial  marg ina l  densit ies d e t e r m i n e d  in the  p resen t  den-  
si ty func t iona l  ca lcu la t ions  (and  t abu l a t ed  in tables  1-3) are  c o m p a r e d  in tab le  4. 
T h e  charac te r i s t i cs  e x a m i n e d  are  the va lue  at  the m i d p o i n t  o f  the nuclei  pz(0), the  
va lues  a t  the nuc lea r  pos i t ions  p z ( ± l ) ,  the peak  height  Pz,max, a n d  the p eak  loca-  
t ions  Zmax. In  o r de r  to  assess the overal l  accuracy ,  we have  also e x a m i n e d  the  devia-  
t ion  ,4 def ined  by  

A = LOz(Z) - pz,.e(Z)] 2 dz , (16) 
OO 

and  the  s imi la r i ty  index S def ined  [24] by  

s =  [ [pz(z)] 2 dz [pz,.0(z)] 2 (17) 1 

o o  OO 

Table 2 
Variationally-determined axial marginal densities for the H + molecule, when ~,3(r) is employed as 
the reference. 

Density Optimum parameters Energy 

F1 (z) cl = 0.27914, al = 0.97919, dl = 1.45274 -1.093 362 53 

F2(z) cl = 0.15566, al = 0.44836, dl = 0.00213; -1.099 919 24 
c2 = 0.08852, a2 = 3.18103,d2 = 1.88525 

F3 (z) cl = 0.08621, al = 0.38415, dl = 0.00866; - 1.100 279 44 
c2 = 0.15638,a2 = 1.36430,d2 = 1.47666; 
c3 = 0.02641,a3 = 8.38213,d3 = 1.95298 

F4 (z) cl = 0.04208, al = 0.33160, dl = 0.00459; - 1.100 316 33 
c2 = 0.15991,a2 = 0.87415,d2 = 1.24741; 
c3 = 0.06203, a3 = 3.08752, d3 = 1.83422; 
c4 = 0.01068,a4 = 15.7573,d4 = 1.96570 

Fs(z) cl = 0.01846,al = 0.28980,dl = 0.03107; -1.100 322 46 
c2 = 0.13737,a2 = 0.62452,d2 = 0.96715; 
c3 = 0.08600,a3 = 1.81467,d3 = 1.69575; 
c4 = 0.02439,a4 = 6.61304,d4 = 1.93126; 
c5 = 0.00362, as = 31.7025, d5 = 1.98224 
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Table  3 
Variat ionally-determined axial marginal  densities for the H~" molecule, when q/6(r) is employed as 
the reference. 

Density Opt imum parameters Energy 

FI (z) cl = 0.27933, al = 0.98050, d~ = 1.45362 -1 .095 349 93 

F2(z) cl = 0.15566,al = 0.44713,dl = 0.00412; -1 .102  121 19 
c2 = 0.08860, a2 = 3.22939, d2 = 1.88668 

F3(z) cl = 0.08168,al = 0.37719,dl = 0.13906; -1 .102  500 30 
c2 = 0.16182,a2 = 1.34289,d2 = 1.46381; 
c3 = 0.02728,a3 = 8.30504,d3 = 1.95314 

F4(z) cl = 0.03828,al = 0.32032,dl = 0.05915; -1 .102 545 72 
c2=O.16541,a2=O.86953,d2=l.24653; 
c3 = 0.06239,a3 = 3.22435,d3= 1.84196; 
c4=O.O0973,a4=17.3693,d4=l.97026 

Fs(z) cl = 0.01711,al = 0.27914,dl = 0.09396; -1 .102  553 12 
c2 = 0.13910, az = 0.62427, d2 = 0.96918; 
c3 = 0.08489, a3 = 1.81544, d3 = 1.69525; 
ca = 0.02564, a4 = 6.52699, d4 = 1.93228; 
c5 = 0.00360, a5 = 34.6892, d5 = 1.98428 

Table 4 
Characteristics of the axial marginal  densities for 
functional  calculations. 

the H~ molecule obtained from the present density 

Reference Marginal  pz(O) pz(+l )  Pz,max [Zmax] A S 
funct ion density 

~u I (r) FI (z) 0.3456 0.2685 0. 3456 0.0000 0.028020 
F2(z) 0.3349 0.2279 0.3351 0.2563 0.015979 
F3(z) 0.3355 0.2793 0.3355 0.0000 0.015278 
F4(z) 0.3350 0.2795 0.3351 0.1989 0.015243 
Fs(z) 0.3351 0.2796 0.3351 0.0613 0.015248 

~3(r) 

~6(r) 

0.998583 
0.999548 
0.999583 
0.999585 
0.999586 

Fl(z) 0.3330 0.2745 0.3 330 0.2228 0.020043 0.999263 
F2(z) 0.3218 0.2864 0.3261 0.5535 0.002784 0.999984 
F3(z) 0.3211 0.2887 0.3246 0.5022 0.000741 0.999999 
Fa(z) 0.3210 0.2890 0.3249 0.5054 0.000555 0.999999 
Fs(z) 0.3211 0.2891 0.3248 0.5227 0.000553 0.999999 

Fl(z) 0.3328 0.2746 0.3 331 0.2311 0.019923 0.999272 
F2(z) 0.3213 0.2868 0.3258 0.5621 0.002533 0.999986 
F3(z) 0.3207 0.2889 0.3242 0.5130 0.000536 0.999999 
Fa(z) 0.3206 0.2893 0.3246 0.5164 0.000279 1.000000 
Fs(z) 0.3207 0.2895 0.3245 0.5327 0.000237 1.000000 

Near  exact 0.3207 0.2897 0.3246 0.5288 0 1 
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where pz(z) is an approximate density and pz,ne(z) is the near exact density. In the 
present study, the function ~15 (see eq. (12a)) with an energy of  -1 .102 634 05 has 
been regarded as giving the density pz,ne(Z) t o  avoid undue numerical complexity. 
The profile ofpz,ne(z) is shown in fig. 1. 

In table 4, we see that the first five densities obtained by referring to ~'1 have lar- 
ger pz(O) and Pz,max and smaller p~(:t:l) values compared to the near exact values. 
The peak locations Zmax are particularly poor. The measures A and S also indicate 
that these densities are rather inaccurate. This is due to the insufficient accuracy 
of the reference ~1 function as mentioned before. 

When ~u3 is employed as the reference function, however, the accuracy is remark- 
ably improved for all FK(z) except for FI (z). The four characteristics of  the mar- 
ginal densities compare well with the exact values, and the overall measures A and 
S also guarantee the closeness of  the present densities F2 (z)-F5 (z) to the near exact 
density pz,ne(Z). In fact, when these densities are plotted, they are all superimposed 
with p~,~(z) shown in fig. 1. The accuracy of  the marginal density is further 
improved by the use of the ~'6 function as the reference. The smaller values of  the 
measure A well reflect the improvement. Figure 2, which depicts the density devia- 
tions 
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Fig. 2. The deviations AFx(z) [K = 3, 4, 5] for the marginal densities obtained by referring to g/6(r). 
Dotted line: AF3 (z); dashed line: AF4 (z); solid line: AF5 (z). 
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z~Fx(z)  = FK(z)  - pz,ne(Z) (18) 

as a function of z, clearly demonstrates the high accuracy of  the present marginal 
densities. In addition to their accuracy, the simplicity of  these densities should be 
noted; for example, F5 (z) consists of  5 terms, whereas P~,ne (z) consists of  120 terms 
(see eqs. (14) and (13a)). 

In summary, we have developed an energy functional theory which enables a var- 
iational determination of the marginal electron density of  a molecular system. 
The method has been actually applied to the H + molecule in its ground state, and 
several axial marginal densities have been determined. In spite of  their simplicity, 
the densities F 2 ( z ) - F s ( z )  obtained by referring to ~'3 or q/6 are shown to have suffi- 
cient accuracy. The present study is the first, exploratory application of  the local 
scaling method to the molecular electron density problem, and extensions to larger 
systems are being planned. We expect the method will be useful for the direct den- 
sity analysis of  the covalency, polarity, charge transfer, etc., in a molecule, and of  
the density reorganizations resulting from interatomic interactions in a linear sys- 
tem. 
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