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The axial marginal density is defined as a projection of the three-dimensional elestron den-
sity onto the symmetry axis in a linear molecule, and represents essential features of the bond-
ing characteristics of that system. Based on the local scaling method, a theory is presented for

. the direct and variational determination of the axial marginal density. lllustrative applications
are presented for the ground Isoy state of the Hf molecule, and simple yet sufficiently accurate
marginal densities are reported.

1. Introduction

Using the method of the local scaling transformation [1], we have recently devel-
oped (see [2,3] for review) a theory for the energy density functional E[p], which
enables a direct and variational determination of the electron density p(r). For the
N-electron system under consideration, according to this theory, we first choose
an appropriate (i.e., simple yet physically acceptable) reference wave function
Wo({r;}) which is associated with the electron density po(r). (Spin variables are sup-
pressed, since they play no direct role in the present study.) We then construct a
local scaling function s = s(r) between the reference density po(r) and the given
density p(r), and apply it to ¥o({r;}) in order to generate a wave function ¥ ,({r;})
corresponding to the given density p(r). Since the generated wave function ¥,({r;})
has the density exactly the same as the given density p(r), we regard ¥,({r;}) as a
parent wave function of the density p(r). The energy density functional E|p] is then
defined as the Hamiltonian expectation value over the wave function ¥,({r;}).
The momentum-space version [4] and the spin-polarized version [5] of the theory
have also been developed. Generalizations to the electron-pair (or intracular) den-
sity [6] and to the excited-state electron density [7,8] have been proposed very
recently.

The method has been actually applied to the helium and heliumlike atoms
[9,10], the Li atom [5,11], and the Be atom [11]. Simple position and momentum
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densities have been variationally determined that compare well with the near Har-
tree-Fock densities. A few calculations beyond the Hartree-Fock approximation
have been given [9,10] for the helium and heliumlike atoms. An application of the
method to mapping between the position and momentum densities has also been
found to be very successful for all the first- and second-row atoms [12,13].

Up to now, however, these applications of the method have been limited only
to atoms. In the present paper, we develop an energy functional theory for the axial
marginal density of diatomic and linear polyatomic molecules using the local scal-
ing technique. The present study is the first application of the local scaling method
to the molecular density problem. The axial marginal density p,(z) is a condensa-
tion of the three-dimensional electron density p(r) = p(x, y, z) onto the internuc-
lear z-axis yet still contains the essential feature of the density (re)distribution in
linear polyatomic systems [14,15]. In section 2, a property of the axial marginal den-
sity is first outlined. A local scaling transformation is then introduced for the refer-
ence and given marginal densities, and an energy functional is defined in terms of
the axial marginal density. In section 3, illustrative applications are presented for
the ground 1soy, state of the H system. Several simple marginal densities resulting
from the energy density variation are reported. Atomic units are used throughout
this paper.

2. Energy functional of marginal density
2.1. MARGINAL DENSITY

The electron density function p(r) defined by
() =:N/|Lp(r,r2,...,rN)]zdrz...drN (1)

is a joint probability function with three variables symbolically expressed by the
spatial vector r. When we use the Cartesian coordinates r = (x, y, z), the one-
dimensional marginal density function p,(z) with respect to the variable z is given

by
p:(z) = / p(x,y,z)dxdy. (2)

If the z-axis is taken to be the symmetry axis of a diatomic or linear polyatomic sys-
tem, p,(z) is referred to as the “axial” marginal density, and the “‘equatorial’’ densi-
ties p,(x) and p,(y) are analogously defined.

The axial marginal density p,(z) is a projection of p(r) onto the symmetry axis,
and is the Fourier transform of the form factor F(s) = F(s,s,,s;) on the corre-
sponding s,-axis [14]. It should be noted that since p,(z) represents a ‘‘condensa-
tion” of the three-dimensional density p(r) onto a line, the number of electrons is
conserved:
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A recent study [14] has shown that the axial marginal density p,(z) is a convenient
quantity to grasp the essential feature of the bonding\antibonding density reorga-
nization in diatomic systems. The marginal density p,(z) has also been used to ana-
lyze [15] the density distributions in different electronic states and to define [16—
19] “atomic regions’ and the resultant atomic charges in a molecule.

2.2. AN ENERGY FUNCTIONAL

For the N-electron diatomic or linear polyatomic system under consideration,
we assume the presence of an appropriate reference wave function ¥o({r;}). It is
associated with the three-dimensional electron density py(r) and the axial marginal
density po(z) through the definitions (1) and (2), respectively. In order to generate
a parent wave function ¥, ({r;}) of a given marginal density p,(z), we first introduce
alocalscaling z = Z/(z) between the two marginal densities p,(z) and po,(z):

pa(z) = J(Z/2)pox(2) (4)

where J(7'/z) is the Jacobian for the transformation 2/ = 2/(z) and satisfies the rela-
tion

J(Z/z)dz = d7, (5a)
or
J(Z/z)dr = d (5b)

in which dr = dxdydz and d7 = dxdydz. The explicit functional form of
7' = 7/(z) is determined by the solution of either the differential equation

dZ'/dz = p:(2)/ poz(2) (6a)
or the integral equation
z Z(z)
/ pz(1) dt=/ poz(t)dt. (6b)

Applying the local scaling 2/ = Z/(z) thus determined, we generate a new wave
function ,({r;}) as follows:

N

v, ({r}) = {H[J (Z/2)]" 2}%({/;}), (7a)

k=1
where

r:' = (xi)yiaz:') and Z, = Zl(zi) . (7b)
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The generated wave function ¥,({r;}) is associated with the following axial mar-
ginal density:

N/ @, (x,y,2,r2, .. .,rN)]2 dry...drydxdy

N
= NJ(ZI/Z)/{HJ(Z;C/Zk)J |Ll'0(x,y,z’,r§,. e ?/N)'z

fe=2

X drz...drNdxdy
= 1(Z/2) / po(x,,2) dxdy

= 1(Z/2)me(?)
= p:l2). ®

The first equality in eq. (8) follows from eq. (7a), the second from egs. (5b) and
(1), the third from eq. (2), and the last from eq. (4). Equation (8) means that the gen-
erated wave function ¥,({r;}) has an axial marginal density exactly the same as
the given density p,(z), and hence the function ¥, is a candidate for the parent wave
function of the marginal density p,(z).

We assign the wave function ¥, to the parent wave function of the given axial
marginal density p,(z). Then the energy E associated with the density p,(z) is
defined as the Hamiltonian expectation value over the function ¥,:

E[g[/z] = <Q‘721ngpz>/<lpzlwz>

= E[pz’ !Z’O] ; (9)

where H is the Hamiltonian of the system. Notice that the energy E is not a true
functional of the auxiliary function ¥, but a functional of the given marginal den-
sity p.(z) and the reference wave function ¥y, since ¥, is totally specified by p, and
¥,. In other words, the energy E is now a well-defined functional of the axial mar-
ginal density p,(z) within the framework of the reference function ¥ initially cho-
sen and fixed. Since the function ¥, is generated through a simple variable-
transformation of ¥, (see eq. (7a)), we suppose that ¥, is physically acceptable so
long as ¥y is acceptable. Then the energy functional (9) is an upper bound to the
exact energy. For a chosen ¥,, we can then determine the axial marginal density
p:(2) so as to minimize the energy E. The procedure constitutes a direct and varia-
tional determination of the axial marginal density of diatomic and linear polya-
tomic systems. Since the auxiliary wave function ¥, has an increased variational
freedom compared to ¥ through the scaling function z’ = 7/(z), we expect that the
minimum energy Enin = E[p;opt, Po] Will be lower than the reference energy
Eo = E[p()z, Lpo].
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3. Application to H} molecule

For the special case of one-electron systems, we can bypass the explicit determi-
nation of the scaling function z/ = 2/(z). In this case, eq. (7a) combined with eq.
(4) reads

,(x,,2) = [p:(2)/ po(2)] 2o (x, y,2') (10a)
If we introduce new reference quantities,

Ty (x,¥,2) = Yo(x,y,7(2)), (11a)

p:)z(z) = pOZ(ZI(Z)) ; (llb)
we canrewriteeq. (10a) as

@.(x,3,2) = [p:(2)/ p0u(2)] /Wy (x, 3, 2) (10b)

Since the wave function ¥; is associated with the marginal density pj,, we can
easily verify that ¥, defined by eq. (10b) has the marginal density p,(z) irrespective
of the reference function ¥;,. Choosing an appropriate ¥;, we can then straightfor-
wardly generate a parent wave function ¥, of the given marginal density p,(z) by
eq. (10b). Such a simplification is also possible for the Hartree-Fock treatment of
two-electron systems in their singlet spin states. However, this is not true for many-
electron systems, since in those cases there is no direct correspondence between
the quantities ¥ and py,.

For the ground 1so, state of the Hf molecule (the internuclear distance R is
kept fixed at 2), we use a linear combination of M symmetrized 1s Gaussian func-
tions as the reference wave function:

wu(r) = i CiG(r; 4, Dy), (12a)

i=1
G(r; A, D) = exp{—A[ +)* + (z+ D/2)*]}
+exp{—A[Z +)*+ (z— D/2)"]}, (12b)

where the origin is taken to be the midpoint of the two nuclei. The parameters
{C;, A;, D;} have been determined by the ordinary variational method. The refer-
ence function (12a) has the axial marginal density

M
poz(z) = Y [CiGi/(4i + 4))\g(z; Ai, Di)g(z; 45, Dj) (13a)
ij=1
where
g(z; 4, D) = exp[~A(z + D/2)*] + exp[~A(z — D/2)"]
= 2exp[—A(z> + D*/4)] cosh(ADz). (13b)

For the sake of comparison later, we note that the right-hand side of eq. (13a) is
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quadratic with respect to the function g, and the density is composed of
M(M + 1)/2 different terms.

As a trial density p,(z), we use a /inear combination of the Gaussian functions
defined by eq. (13b):

X
FK(Z) = Zcig(z;ai)di)) (14)
=]

which contains adjustable parameters {c;, a;, d;}. Since the analysis of the diatomic
marginal density has shown [14] that the axial marginal density does not have any
cusps, eq. (14) can be considered as a reasonable approximation. In fig. 1, the near
exact p;(z) of the Hf molecule, which is dealt with in the present study, is depicted
for reference (see below for details).

Since we have fixed a functional form of the trial marginal density p,(z), the
energy functional (9) now reduces to an energy function of the parameters
embedded in Fg:

E[pz] = E({c;,ai, dl}) y (15)
0.4 t 4 4= + i
0.3 4 L
N
~u 0.2 4 1
Q
0.1 4
0.0
- 4

Fig. 1. The near exact marginal density p.n(z) of the Hi molecule. All the F»(z)~Fs(z) densities
obtained by referring to either w3 (r) or y4(r) (summarized in tables 2 and 3) are superimposable on
Pzne(2) in the present scale of figure.
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for a chosen reference function y,,. In the following computations, the integra-
tions involved in the evaluation of the energy expectation value have been per-
formed analytically with respect to x and y, and numerically with respect to z using
the double exponential method [20]. Sufficient accuracy of the numerical integra-
tion has been verified. The optimization of the parameters {c;, a;, d;} has been car-
ried out using the Powell method of conjugate directions [21].

We have first employed the simplest function y, (i.e., M = 1 in eq. (12a)) as the
references for the density functional calculations. The results for the five trial mar-
ginal densities Fx(z) are summarized in table 1 together with the associated electro-
nic energies E[Fg|. Since the reference function w, has an energy of
—1.037 411 11, all the densities in table 1 are superior to the reference density in the
variational sense. However, the best energy of —1.043 875 11, obtained with
Fs(z), is still far from the known [22] exact value of —1.102 634 21. The analysis of
the density functions themselves has shown that the overall behavior is accepta-
ble, but in quantitative sense the distribution in the internuclear region is poor com-
pared to the near exact density (see below for detailed discussion). Not much
improvement in the energy and the density distribution is observed, with an
increase in the number of terms in the trial density. The function y, composed only
of a single Gaussian appears to be too crude and not appropriate as a reference of
the system.

Table 1
Variationally-determined axial marginal densities for the HY molecule, when y(r) is employed as
the reference.

Density Optimum parameters Energy
F(z) ¢ = 0.27193,4; = 0.92924,d; = 1.39722 —1.039 591 88
Fy(z) ¢; = 0.15884, 4, = 0.46608,d, = 0.00481; —1.043 677 25

¢ = 0.07968,a; = 2.59902,d, = 1.85017

Fi(z) ¢; = 0.08510,4; = 0.40195,d; = 0.01146; —1.043 852 37
¢y = 0.15568,a, = 1.24734,d; = 1.42611;
¢3 =0.02116,a3 = 6.23628,d; = 1.91520

Fy(z) ¢1 = 0.03246,4; = 0.33738,d, = 0.02202; —1.043 872 41
¢ = 0.16408,a, = 0.79270,d, = 1.15400;
¢3 = 0.06093, a3 = 2.40969,d5 = 1.78162;
¢4 = 0.00879,a4 = 10.9301,ds = 1.94274

Fs(z) ¢y = 0.01505,a; = 0.30166,d, = 0.06786; —1.043 875 11
¢ = 0.13629, a; = 0.61814,d; = 0.93515;
¢y = 0.08913,a; = 1.54133,d; = 1.59987;
¢4 = 0.02041, a5 = 5.06876,ds = 1.90305;
¢s = 0.00240, a5 = 25.1838,ds = 1.97279
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We have then carried out the density functional calculations using w3 and
functions as the reference. (The functions y; and w¢ have energies of —1.100 218 33
and —1.102 524 17, respectively.) The results are summarized in tables 2 and 3 for
the trial functions F(z) through Fs(z). Compared to the values in table 1, we find
that the energies E[Fx]| are greatly improved by the adoption of the better reference
functions. In particular, the energy —1.102 553 12 associated with the Fs(z) den-
sity in table 3 is reasonably accurate, when we consider the slow convergence [23] of
Gaussian approximations in the ordinary variational calculations.

The accuracies of the 15 axial marginal densities determined in the present den-
sity functional calculations (and tabulated in tables 1-3) are compared in table 4.
The characteristics examined are the value at the midpoint of the nuclei p,(0), the
values at the nuclear positions p,(+1), the peak height p; max, and the peak loca-
tions zmax. In order to assess the overall accuracy, we have also examined the devia-
tion A defined by

00 1/2
a={[ o) pmlaP e} (16)
and the similarity index S defined [24] by
00 00 oo 1/2
s= [ n@em@ @] [ 0P s [l e} (17)
Table 2

Variationally-determined axial marginal densities for the H] molecule, when y;(r) is employed as
the reference.

Density Optimum parameters Energy
Fi(z) ¢ =0.27914,a, = 0.97919,d; = 1.45274 —1.093 362 53
B (z) ¢; = 0.15566,a; = 0.44836,d; = 0.00213; —1.099 919 24

¢y = 0.08852,a; = 3.18103,d, = 1.88525

F(z) ¢y = 0.08621,a; = 0.38415,d; = 0.00866; —1.100 279 44
¢y = 0.15638,a; = 1.36430,d, = 1.47666;
c3 = 0.02641,a; = 8.38213,d3 = 1.95298

Fi(2) c; = 0.04208,a, = 0.33160,d; = 0.00459; ~1.100 316 33
¢y =0.15991,a; = 0.87415,d, = 1.24741;
c3 = 0.06203, a3 = 3.08752,d; = 1.83422;
cs = 0.01068,a4 = 15.7573,d; = 1.96570

Fs(2) c1 = 0.01846, a, = 0.28980,d, = 0.03107; ~1.100 322 46
¢ = 0.13737, a, = 0.62452, d, = 0.96715;
¢3 = 0.08600, 23 = 1.81467, d = 1.69575;
cs = 0.02439, a, = 6.61304,d, = 1.93126;
cs = 0.00362, as = 31.7025, ds = 1.98224
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Table3

Variationally-determined axial marginal densities for the Hf molecule, when y¢(r) is employed as
the reference.

Density Optimum parameters Energy
F(z) ¢1 = 0.27933,a; = 0.98050,d, = 1.45362 —1.095 349 93
Fy(z) ¢y = 0.15566,a; = 0.44713,d; = 0.00412; —1.102 12119

c; = 0.08860, 2, = 3.22939,d, = 1.88668

F(z) ¢; = 0.08168,4; = 0.37719,d; = 0.13906; —1.102 500 30
¢ =0.16182,a; = 1.34289,d, = 1.46381;
c; = 0.02728,a; = 8.30504,d; = 1.95314

Fi(z) ¢; = 0.03828,4; = 0.32032,d; = 0.05915; ~1.102 545 72
¢y = 0.16541,a, = 0.86953,d, = 1.24653;
c3 = 0.06239, a3 = 3.22435,d; = 1.84196;
cs = 0.00973,a4 = 17.3693,ds = 1.97026

Fs(z) ¢y = 0.01711,a; = 0.27914,d; = 0.09396; -1.102 553 12
¢; = 0.13910, a; = 0.62427,d, = 0.96918;
¢y = 0.08489,a; = 1.81544,d; = 1.69525;
¢4 = 0.02564, a5 = 6.52699,dy = 1.93228;
¢s = 0.00360, as = 34.6892,ds = 1.98428

Table 4
Characteristics of the axial marginal densities for the H molecule obtained from the present density
functional calculations.

Reference Marginal  p,(0) (1) Pz max |Zmax] A S

function  density

v (r) Fi(z) 0.3456  0.2685  0.3456  0.0000 0.028020  0.998583
F(z) 0.3349 0.2279 0.3351 0.2563 0.015979 0.999548
F(z) 0.3355 0.2793 0.3355 0.0000 0.015278 0.999583
Fi(z) 0.3350 0.2795 0.3351 0.1989 0.015243 0.999585
Fs(2) 0.3351 0.2796 0.3351 0.0613 0.015248 0.999586

ws(r) Fi(2) 03330 02745 03330  0.2228 0.020043  0.999263
Fy(z) 0.3218 0.2864 0.3261 0.5535 0.002784 0.999984
F(z) 0.3211 0.2887 0.3246 0.5022 0.000741 0.999999
Fy(z) 0.3210 0.2890 0.3249 0.5054 0.000555 0.999999
F5(z) 0.3211 0.2891 0.3248 0.5227 0.000553 0.999999

we(r) Fi(2) 03328 02746 03331  0.2311 0.019923  0.999272
Fy(z) 0.3213 0.2868 0.3258 0.5621 0.002533 0.999986
F;5(z) 0.3207 0.2889 0.3242 0.5130 0.000536 0.999999
Fy(z) 0.3206 0.2893 0.3246 0.5164 0.000279 1.000000
Fs(z2) 0.3207 0.2895 0.3245 0.5327 0.000237 1.000000

Near exact 0.3207 0.2897 0.3246 0.5288 0 1
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where p,(z) is an approximate density and p, .(z) is the near exact density. In the
present study, the function 5 (see eq. (12a)) with an energy of —1.102 634 05 has
been regarded as giving the density p; ne(z) to avoid undue numerical complexity.
The profile of p; ne(z) is shownin fig. 1.

In table 4, we see that the first five densities obtained by referring to y, have lar-
ger p,(0) and p; max and smaller p,(+£1) values compared to the near exact values.
The peak locations zpax are particularly poor. The measures A and S also indicate
that these densities are rather inaccurate. This is due to the insufficient accuracy
of the reference y; function as mentioned before.

When y is employed as the reference function, however, the accuracy is remark-
ably improved for all Fx(z) except for F)(z). The four characteristics of the mar-
ginal densities compare well with the exact values, and the overall measures A and
S also guarantee the closeness of the present densities F»(z)— Fs(z) to the near exact
density p;ne(z). In fact, when these densities are plotted, they are all superimposed
with p;ne(z) shown in fig. 1. The accuracy of the marginal density is further
improved by the use of the 4 function as the reference. The smaller values of the
measure A well reflect the improvement. Figure 2, which depicts the density devia-
tions

AFK(Z) X 1000

:
I
s
i
I
i
T T+ o L 3

e i b
-1.0 + + + + + $
-4 -3 -2 -1 0 1 2 3 4

Fig. 2. The deviations AFx(z) [K = 3,4, 5] for the marginal densities obtained by referring to y¢(r).
Dotted line: AF;3(z); dashed line: AFy(z); solid line: AFs(z).
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AFk(z) = Fg(z) — Pzne(Z) (18)

as a function of z, clearly demonstrates the high accuracy of the present marginal
densities. In addition to their accuracy, the simplicity of these densities should be
noted; for example, F5(z) consists of 5 terms, whereas p;, e (z) consists of 120 terms
(seeegs. (14) and (13a)).

Insummary, we have developed an energy functional theory which enables a var-
iational determination of the marginal electron density of a molecular system.
The method has been actually applied to the H} molecule in its ground state, and
several axial marginal densities have been determined. In spite of their simplicity,
the densities F>(z)—Fs(z) obtained by referring to y or y¢ are shown to have suffi-
cient accuracy. The present study is the first, exploratory application of the local
scaling method to the molecular electron density problem, and extensions to larger
systems are being planned. We expect the method will be useful for the direct den-
sity analysis of the covalency, polarity, charge transfer, etc., in a molecule, and of
the density reorganizations resulting from interatomic interactions in a linear sys-
tem.
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